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This survey describes the major optimization techniques of com-
pilers and groups them into three categories: machine dependent,
architecture dependent, and architecture independent. Machine-
dependent optimizations tend to be local and are performed
upon short spans of generated code by using particular properties
of an instruction set to reduce the time or space required by a
program. Architecture-dependent optimizations are global and
are performed while generating code. These optimizations con-
sider the structure of a computer, but not its detailed instruction
set. Architecture-independent optimizations are afso global but
are based on analysis of the program flow graph and the depend-
encies among statements of source program. The paper also pre-
sents a conceptual review of a universal optimizer that performs
architecture-independent optimizations at source-code level.
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INTRODUCTION

Most computer systems support a multiplicity of program-
ming languages; for a particular language, the translators or com-
pilers often exist in three versions. The first version is a small,

fast compiler, which is for program development and has exten- -

sive diagnostics and debugging aids. The second version is z re-
entrant conversational compiler, which is used for online
development of programs and has comprehensive editing
facilities. The third compiler is the optimizing compiler, which is
used for translating production programs into efficient object
code and is larger and slower than the others. In this paper, we
examine the techniques employed in optimizing compilers and
make some quantitative comparisons between the programs of
the optimizing compilers and other compilers. A large number of
the examples and references in the paper are FORTRAN-related,
because FORTRAN is the most widety used production program-
ming language.

The history of optimizing compilers dates back at teast as
far as FORTRANI (I). At that time, most programming was
done in machine language, and a compiler that offered con-
venience at the expense of machine time would not have been
acceptable. The following quotation from an International Busi-
ness Machines Corporation (IBM) specification reveals that the
convenience of the mew language was believed insufficient to
cause its widespread acceptance.

..FORTRAN may apply complex, tengthy techniques in

coding a problem which the human coder would have

neither the time nor inclination to derive or apply. Thus, in
many cases, FORTRAN may actually produce a better pro-
gram than the normal human coder would be apt to pro-

T

Even in-that very first FORTRAN compiler, 25 percent of the
instructions were for optimization.

OFTIMIZATION TECHNIQUES

The following three sections describe varous optimization
techniques that have been used in compilers or have been sup-
gested for compilers. Very little has been done to classify optimi-
zations; they are grouped here by function,

Compiler optimization techniques operate on three levels:
machine dependent, architecture dependent, and architecture
independent. Machine dependent is used to describe the
instruction-level sensitivities of a compiler. Architecture depend-
ent denotes those parts of a program that relate to the general
hardware implementation, but not to a specific machine.

- Architecture independent (used in lieu of the more familiar

-phrase—machine independent) indicates those aspects of program
formulation that do not depend on a particular computer system
or even on a, type of implementation (e.g. pipeline processing).
Optimizations originating in the academic and scientific com-
munity tend to be global, while, until recently, manufacturers
have concentrated on local and machine-dependent techmques

Machine-Dependent Optimization

One of the earliest references on compilation techniques
concerns the Project for the Advancement of Coding Techniques
{PACT), an experimental compiler. The target machine was the
IBM 701, and the PACT compiler, described by Miller and
Oldfield (2), produced code sensitive to the register-placement
curiosities of that machine. No formal techniques were em-
ployed; rather, a set of rules was coded in tabular form to contral
code generation. To a large extent, this same technique is appli-
cable today for machine-dependent code optimization. The
FORTRAN I compiler contained a sophisticated arithmetic trans-
lator by Sheridan (3) that performed association and commuita-
tion to take advantage of the AC/MQ relationship on the
IBM 704. For example, a string of multiplications and divisions
was reordered to minimize the number of register transfers
(exchanges) that had to be performed.

McKeeman (4) proposes a postprocessing technique for
optimization, which can be considered as a window traversing the
sequence of generated (unoptimized) code. If the instructions
visible in the window match one of a number of patterns, the
code is transformed. In this manner redundsiat stores, multiplica-
tions by two, and register transfers can easily be optimized.
Bagwell (5) describes a set of clever coding tricks (special cases)
that may be implemented for almost any machine, Although
performed during code generation, this is essentially McKeeman's
approach. Thesc machine-dependent optimizations are the most
descriptive of available techniques.

Architecture-Dependent Optimization

Three optimization techniques are classified here as archi-
tecture dependent. These techniques are used for machines
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having one or more of the following generat characteristics:
1.  The computer has n accumulatoss.
2. The computer can execute several independent instruc-
tions in parallel. '

3. The computer executes arithmetic and logical instruc- .

tions upon multiple data streams.
The evolution of computer architecture has followed a path from
the single-accumulator IBM 704 to the multipie-accumulator
CDC 6600, which is capable of executing several instructions in
parallel, to the ILLIAC IV, which operates on up to 64 data
items simultaneously. Optimization techniques have had 2 par-
allel evolution. .

The n Accumulator Computer

Straightforward code generation of expressions involving
noncommutative operations poses a special difficulty for a one-
accumulator computer. In an expression such as fa+b){c-d), the
denominator shouid be computed first to be available for division
when the numerator is computed and is in the aceumulator.
Andersen (6) discusses 2 technique that implements this proce-
dure and eliminates the need to store and recover the values of
many subexpressions. Anderson’s technique for a one-
accumulator computer looks ahead and delays code generation
for the leftside expression of a noncommutative operator until
code generation for the right side occurs. One a multiple-
accurnulator machine, the technique is also valuable because it
decreases the number of registers required to evaluate an

expression. -
Nakata (7) extends this procedure to handle # accumula-

tors. The procedure is enhanced by the fact that some heuristic
observations are included to make the cutput similar to ordinary
coding practices. The programming problem of using a minimum
number of accumulators is equivalent to a graph-theoretic tree
transformation proposed by Redziejowski (8). He proposes an
algorithm for performing the tree transformation and proves it
" equivalent to that of MNakata. A study by Schneider (%) of the
properties of tree-structure representations of arithmetic expres-
stons yields the number of required registers: For k nested
parenthetical subexpressions with # operator precedence levels
{k+in+l registers are required.

Finkelstein (10} describes a technique, deferred store, which
eliminates much of the unnecessary storing and leading of partiai
results within loops on multiple-register machines. (Register is
used here to indicate either an accumulator or index register.)
When an assignment statement is executed, the accumulator is
not actuaily stored in the result variable, Instead, other registers
replace those containing data for deferred stores. If a result varia-
ble is to be modified before the deferred store has been per-
formed, the value.of the variable is in place and need not be
fetched. The following cxample indicates a common situation
where the deferred store saves a significant amount of time:

Do 1 I=1iIN
I SUM=SUM+ A(l)

.Mn
N

-
]
=

A special case of the n accumulator machine is one where
the accumulator is the top element of a pushdown stack. The
Burroughs 5000 and English Electric KDFY are examples of such
a machine. Randell and Russell (11) describe a one-pass proce-
dure for translation of arithmetic expressions into a Reverse-
Polish form suitable for a stack machine. An interesting point is
their architecture-independent optimization that calculates a
constant during compilation when both operands are constants.
Generalizations of this technique are discussed in the next
section,

Parallel-Instruction Execution

The CDC 6600 computer was the first commercially avail-
able machine to overlap the execution of several instructions.

This class of computer, capable of paratlel-instruction execution,
has independent functional units that operate simultaneously.
The programmer (or compiler) need not be explicitly aware of
the parallel-execution capability; it will be used when possible.
However, if the instructions are ordered to maximize parallel
execution, a performance advantage of up to a factor of three
can be obtained. Allard, Wolf, and Zemlin (12} describe the par-
allel capabilities of the CDC 6600 and briefly mention the speed
advantage gainred by reordering instructions. Thorlin (13) de-
seribes the technique used in CDC FORTRAN, which is based on
a PERT-like analysis of depcndency and timing for ordering
CDC 6600 instructions. The machine’s independent-functional
units are kept busy by placing unrelated instructions together
and sequencing the longest activities first. A similar instruction-
scheduling technique was implemented by Blum, etal. {14) in
the IBM FORTRANH compiler. It constructs a dependency
array that defines the area within which each instruction may be
moved. A weight is assigned to each instruction by adding a base
weight (a function of the instruction time) and the weight of
every instruction which is dependent on it; instructions are then
ordered by decreasing weight. :

However, the improvement attainable by instruction re-
ordering is Bmited by the parallelism inherent in the original
instruction sequence. Stone (15) summarizes techniques that
may be used to translate arithmetic expressions to achieve a high
degree of inherent paraltelism. His process corresponds to a tree
structure with minimal height. This is the opposite resuit from
that of the n accumulator, where minimizing the number of regis-
ters increased the tree heighf. Figure | shows two different trecs
for evaluating an expression. The first tree employs only one
register for evaluating the expression; the seccond tree results in
minimum evaluation time on a machiné with at least four simul-

" taneous multipliers. Because of the effects of data store/load in-

structions, the second tree may not result in minimum time on
machines with fewer multipliers. Figure 2 shows two different
sets of instructions for evaluating the expression corresponding
to the two trees, which result in serial and parallel execution.

b) TREE YIELDING MAXIMUM INHERENT PARALLELISM

Figare 1. Tree Structure for Serial and Parallel
Computation of an Expression.
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Figure 2. Resonances Used in Serial and Parallel
Computation of an Expression

Han (16} examines the general problem of minimizing the
tree height of a set of expressions. His procedure for determin-
ing an expression’s minimum tree height can be used by a
compiler to measure the degree of parallelism obtainable in a
program. Ramamoorthy and Gonzalez (17) describe a method
for attaining the maximum amount of parallel execution on a
machine with a fixed number of processing wnits, Their method
orders subexpressions so that some expressions can be delayed if
insufficient processing units are available to perform all compu-
tations in parallel. -

Multiple Data Streams

The preceding section discussed some techniques relevant to
computers whose architecture permitted parallel exccution of in-
structions while maintaining the standard instruction set. This
section discusses the optimization techniques applicable to com-
puters where the instruction set reflects the computer’s capacity
to perform a single instruction on many data items, Two com-
puters are in this category: the CDC STAR and the Burroughs
ILLIAC IV. The STAR, a pipeline computer, processes operands
sequentially, but with a high degree of overlap. The ILLIAC, a
parallel computer, processes 64 operands simultaneously. The
instruction sets of the two machines are remarkably similar, and
high-tevet language programs must be designed from the same
viewpoint for both machines.

For programs written in a procedural language,
Burkhardt {18) describes some occurrences of inherent paral-
lelism. He points out that parallelism may occur from the arith-
metic-expression level, through independent iterations of a loop,
to parallel-task execution within an operating system environ-
ment. Millstein (19), reporting on the design of a FORTRAN
compiler for the ILLIAC IV, discusses a compiler that will detect
parzllelism in the use of subscripted variables in DO loops. This
three-step procedure first determines data dependencies and
then, if there are more dependencies between loop iterations,
examines flow within the loop and determines an expression
ordering. The first two steps arc analyzed by graph-theoretic
techniques; the last by ad hoc methods. A later report by

Lamport and Presberg (20) gives a detailed description of the
algorithms and techniques used to permit parallel execution of
DO loops.

Schneck {21) developed a simplified algorithm for the
detection of paralielism in standard FORTRAN programs and
defined the concept of feedback which prevents parallel execu-
tion. Testing for feedback involves a flow analysis of the source
program and a search for subscript forms that cause feedback. In
the absence of feedback, statements are rewritten to indicate
par_allel execution. Additionally, scalar variables that might bar
parallel .execution are expanded to vectors. Thus, the following
statement may be performed entirely in parallel.

DO 1 1I=1,20
A=(BM+BI+IN* .5
Cly=C+A

1 D =D(D-A

Kuck, Muraoka, and Chen (22) performed an analysis simi-
lar to Schneck’s. Their orientation was to define a machine archi-
tecture to process ordinary programs. They conclude that, even
for simple programs, a multiple-processor arganization, consisting
of 16 processors, is of value.

Architecture-Independent Optimization

~Architecture-independent optimization techniques are
global in nature: they perform a flow analysis on the source .
program to obtain necessary information. This section summa-
rizes major architecture-independent optimizations, which are
itlustrated in Figure 3. The most widely applied optimization is
common subexpression efimination., When a calculation is per-
formed, a.search is made to determine if the calculation was
performed previously and need not be repeated; if so, the prior
result replaces the calculation. Dead variable efimination removes
statements that assign values to unused variables in the program.
These unused variables most frequently result from program
moedifications, but may also be due to common subexpression
elimination. Code motion refers to the rearrangement of expres-
sions permitting a calculation to occur in a low-frequency pro-
gram segment and to be available for use in a high-frequency
segment. Finally, constant propagation removes calcudations con-
taining only known constants from the program and performs
them in the compiler. This is certainly code motion to a low-
frequency segment.

Frequency Analysis

The original FORTRAN compiler (23) contained an opti-
mizer that gathered information on the source program’s strdc-
ture. The source program was analyzed and broken down into a
sét of basic blocks,! and a table listing the predecessors of each’
basic block was created. This table was then used in a Monte
Carle simulation to find the relative frequency execution of cach
basic block. A random number generator, augmented by pro-
grammer estimates supplied in FREQUENCY statements.2 was
used to traverse paths in the program flow graphs, and a count
was kept for each basic block. Figure 4 shows a program flow
graph, which is used as an example throughout this section, and
Table 1 shows the relative frequencies obtained by simulation.

Next, the source program blocks were optimized in order
from highest to lowest frequency. The target computer, an
IBM 704, had only threc index registers, and much of the com-
piler's optimization centered on assigning them efficiently in the
most frequently executed blocks of the program. Code genera-
tion was performed for a machine assumed to have as many

1 A basic block is the fundamental program flow unit; it is a
segment of code with only one entry and one exit paint.

2 According to John Cocke, the FREQUENCY statement was
removed from the langueage after it was discovered to have been
incorrectly implemented (frequencies were being computed in-
versely) without having encountered any user reaction.
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A=R+C
Y =Y+{.
Z=C
Q=(Z+B)xSIN(.7854)
DO 1.1=(,100

1 P(:PM*A+B)

sample program
A=B+C
. -~
b
Q=A»707 -~—2=¢,d.
TOOOCI =A+B ~——2e
DO11:1,100
1 P)=P{1}*TOC0O!

optimized program
a. ELIMINATION OF DEAD VARIABLE
b. ELIMINATION OF DEAD VARIABLE, CAUSED BY ¢
c. COMMON SUBEXPRESSION ELIMINATION
d. CONSTANT PROPAGATION
e

CODE MQTION

Figure 3. Architecture-Independent Optimization

index registers as required. Then, the optimizer efficiently as-
signed the 704°s three index registers within the highest fre-
quency block of the program, while interpolating instructions to
save and restore index register values when necessary. As other
blocks were processed, index register assignments were made to
match those of adjucent (immediate predecessor or successor)
higher frequency blocks. When no adjacent blocks had already
been processed, no matching of index registers was necessary.
When just one.adjacent block had already been processed, it was
necessary only to choose a matching permutation of the index
registers. If two or more adjacent blocks had already been proc-
essed, the possibility of matching all index repisters was uncer-
tain. Therefore, it became necessary to add instructions for
loading index registers with the values required by adjacent
blocks. The progression of processing from high-frequency to
low-frequency blocks caused the added instructions to be located
in the later low-frequency blocks.

Table 1. Relative Frequencies Obtained
by Simulation

RELATIVE

BLOCK FREQUENCY

1.0
8.2

- 3¢
6.5
1656
289
4.1

71

1.0

@ W™ N A WK -

Figure 4. Program‘Flow Graph with
Branch Probabilities

in another study, Horwitz (24) describes a graph-theoretic
procedure for index-register allocation: An optimal index-register
allocation may be obtained for straightline (loop-free) programs.
Horwitz’s algorithm is a practical procedure for carrying out the
highly combinatorial assignment process similar to that employed
by FORTRAN I. Also, Luccio (25) provides a further reduction
of the enumeration required for an optimal allocation. The pro-
gram graph is partitioned, and the allocation problem may be
solved separately for each subgraph and then combined.

Day (26) discusses an alternate linear-programming ap-
proach for assignmént of registers. He demonstrates an optimal
algorithm and gives two others which provide good approxima-
tions, but are fast enough for use in a compiler.

Matrix Analysis

Prosser (27) describes a Boolean-matrix approach to flow-
graph analysis that avoids the lengthy Monte Catlo techniques
uged in FORTRAN I, The predecessor information obtained by
analysis of the program is used to construct a connection matrix
(Table 2). The connection matrix € has a / at C,-j if, and only if,
program block j is a direct successor of program block J. By
repeated matrix multiplication, the connection matrix may be
used to determine the sets of blocks participating in loops.
Prosser also introduces the dominance telation to indicate that a
particular block {dominator) must be traversed before another
block (dominee) can be reached. This construct is extremely
valuable. When a calculation is moved out of a block, it must be
moved to a dominator block to assure that it will be performed.
These matrix operations yicld valuable, if lengthy, methods for
obtaining propram-{low infermation. Warshalt (28) describes a
simplification of the multiplication of # x # Boolean matrices
that reduces the time required from OfnJ) to 0fn?), which
makes matrix techniques practical.



Tabte 2. Boolean Connection Matrix C
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For some general results on what may be obtained from the
connectivity matrix of a program flow graph, Ramamoorthy (29)
presents algorithms that identify unessential nodes, enumerate
the maximum strongly connected regions (i.e. loops), and parti-
tion the flow graph into disjoint subgraphs. These matrix manip-
ulations are basic to obtain the information required for program
optimization. Unessential nodes may be discarded from a pro-
gram because they will never be executed, The identification of
the maximum strongly connected regions permits locating rela-
tive-constant expressions and moving them to lower frequency
regions, as well as indicating on which blocks the optimization
process should concentrate. Partitioning the flow graph into dis-
joint subgraphs permits working with smaller units at a time,
which results in a significant decrease in the combinatorial efforts
expended in optimization.

In a FORTRAN optimizer, Allen (30) uses matrix methods
for the analysis of a program’s flow graph. The connection ma-
trix is used to obiain a set of stronely connected regions which
the optimizer processes from the inside out. Within a basic block,
redundant expressions are evaluated only once and then elimi-
nated. Constant propagation is performed, and expressions are
replaced by their computed values. Within a loop, invariant in-
structions are moved out, strength reduction is performed, and
tests are simplified. Unused definitions and computations are
eliminated where the flow information indicates this is possible.
The procedures to effect these optimizations take advantage of
the bit-parallel operations found in most machines and perform
iogical operations, a word at a time. Allen’s article is extremely
comprehensive and shows the details involved in applying each of
the optimizing techniques.

Following Allen’s optimization techniques, Kleir and
Ramamoorthy (31} describe optimization procedures for micro-
programs, which may be viewed simply as another source lan-
guage requiring translation to machine language. The connec-
tivity matrix is used to find strongly connected regions which are
processed innermaost to outermost, and code motion is performed
to decrease instruction execution frequency. Within a basic
block, common-subexpression elimination and dead-variable
elimination is performed (referred to by the authors as redundant
actions and negated actions, respectively).

In his book, Gries (32) devotes an entire chapter to a dis-
cussion of code optimization techniques. He views optimization
at three levels: within a basic block, within a loop, and globally.
The global optimization techniques are pattemed after Allen,

In FORTRAN I, subscript calculations were performed at
any definition of a variable used in the subscript, which led to
inefficient codes when many definitions occurred with few uses.
Most other compilers simply recomputed a subscript for each use

n

or kept track of local multiple uses of a subscript (2.g., within an
assignment statement). In an article, Ryan (33) considers the
problem of determining where a common subscript (or any com-
MOR expression} may be computed with minimum frequency to
be available when required. Ryan’s algorithm may be used with a
multipass compiler and permits locating computations within a
lower frequency region at a distance from the point of use.

In the 1960s, the advent of new hardware brought a new
class of compilers and optimization techniques. In an IBM tech-
nical report, Medlock and Lowry (34) describe the optimization
techniques that are the foundation of the IBM FORTRANH

-compiler. These techniques extend the dominance relationship

introduced by Prosser. In addition, a new defining relationship
makes it possible to replace the dominance array with four vec-
tors and reduce the space required, Frequency information is
obtained by inverting the probability connection matrix p, where
p; indicates the probability that program block j will succeed
bllock {. Table 3 shows the probability connection matrix for the
example flowchart and its inverse. In Table 4, row one indicates
frequency relative to block one.

Table 3. Probability Connection Matrix P

SUCCESSOR BLOCK
p
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Table 4. Frequency Matrix
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Determination of relative frequencies again permits ordering
the processing of blocks from highest to lowest frequency, With-
in that order, common subexpressions may be elitninated and
expressions may be moved from high- to low-frequency blocks.
The dominator relationships are used to ensure availability of an
expression when needed. When profitable, strength reduction will
be performed with initialization instructions placed in a domi-
nator block. Subsumption, or substituting onc variable for
another if they are equal at each reference, minimizes the -
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number of simple replacement operations in a program. In
another report, Lowry and Medlock (35) describe the

FORTRAN H production compiler, discuss the compilet’s imple- -

mentation, and suggest several additionat optimizations. An inter-
esting point about the compiler is that it is written primarily in
FORTRAN. First run on the iBM 7094, the compiler was used to
create 2 pew version of itself for the IBM 360. When the
optimizer had been tested, it was used to translate the compiler,
which resulted in a 25 percent decrease in size and a 35 percent
decrease in compilation time. To achieve a reasonable processing
specd, the compiler uses bit-vectors which can be processed by
“the bit-parallel logical instructions available on the IBM 360,
Lowry and Medlock also discuss register assignment and code.
generation techniques.

Graph-Theoretic Analysis

Busam (36) reviews the UNIVAC 1100 series, which em-
ploys a three-pass optimizing compiler, The first pass encodes all
operations into a uniform tabular format. To achieve maximum
recognition of common subexpressions, redundant information
may be added to the table, while flow information is maintained
in a list containing all statement numbers and references. The
second pass scans the code in reverse order and performs com-
mon-subexpression elimination and movement of loop-invariant
computations. The compute point of each expression is deter-
mined, and the expression evaluation is moved to that (fower
frequency) point. In contrast, IBM FORTRAN H will succes-
sively move a computation out of each loop level until it can no
longer be moved. The determination of an expression’s compute
point permits high-speed compilation because an expression need
not be moved more than once. The second and third passes of
the compiler are also concerned with register assignment and
code generation.

In the USSR, the ALPHA automatic programming system

(Yershov 37 and 38) for the M-20 computer produces object
code that in some cases is nearly the equal of hand coding, The
major architecture-independent optimizations include optimiza-
tion of subscripts within FOR loops and the elimination of
redundant subexpressions within a basic block. A feature of the
ALPHA compiler, not found elsewhere, is the attempt to mini-
mize the number of locations occupied by data within a program.
While many optimizations result in a decrease in the size of a
program because fewer instructions are generated, ALPHA specif-
ically minimizes the storage requirements for data and variables
by permitting several variables to share a storage iocation if their
uses do not interfere with one another. This is a generalization of
subsumption, which coalesces two variables into one if they con-
tain the same value whenever used.

Much of the work in the past two years has centered around
the use of the Cacke-Allen interval analysis technique, which was
described first by Cocke and Schwartz (39). This technique is
based on the irterval, a partially ordered set of basic blocks with
the following properties:

l.  An interval is a set function of a distinguished block

called the head.

2. AN blocks in an interval, except the head, have all their

immediate predecessor blocks in the interval.

Intervals are easily and rapidly constructed, and they readily
identify inner loops and a possible processing order within each
loop. The ordering induced by the interval construction is vaiu-
able because dominators always precede their dominecs,
Common subexpression elimination is simplified in this context
because the redundancy of a computation is indicated by its
presence in a dominator block. The interval construction process
may be iterated (treating intervals as basic blocks), and higher
order loops will then be identified. Most program graphs will be
reduced to a single node by repetition of this procedure. Those
few program graphs which are not reducible may be transformed
into feducible graphs by the process of.node splitting (Cocke and
Miller (40)). Figure 5 shows the intervals obtained from the
example flowchart and how they may be used to compute
relative frequencies.

o WB=\B+/T- T 789
345 - : END
678 .

2 374 END

END
INTERVALS FIRST | TERATED SECOND
INTERVALS ITERATED
INTERVAL
e |
¥ s —
FREQUENCY = ——
P Pe2 Pi

DETERMINATION OF
FREQUENCY

- Figure 5. Interval Analysis and Frequency De:emination-Relaiive

Frequency of a Loop May Be Determined from the Probability of a
Loop-Closing Branch

In the proceedings of the Association of Computing Machin-
ery SIGFLAN’S Symposium on Compiler Optimization,
Allen (41) indicates that over 90 percent of the program graphs
subject to analysis -were reducible, She gives algorithms that
determine the back dominator of each node in an intervai, the
articulation blocks of an interval, and the maximum strongly
connected region within an interval, The use of interval anzlysis
for global optimization is shown with an example that demon-
strates how information is relayed through successive iterations
of the interval construction. In the same proceedings, Cocke (42)
describes a method for common-subexpression elimination based
upon interval analysis, The information required to determine
whether a computation is redundant may be coded as a large
system of Boolean equations. The interval technique permits
solution of this system without having to perform a tedious
Gauss elimination. Only two passes through the system of cgua-
tions are required. A later paper by Allen and Cocke (43) sum-
marizes techniques for identifying intervals and properties of
blocks within intervals. The concept of node splitting to permit
teduction of an arbitrary program flow graph is discussed in
detail.

Kennedy (44) has buift upon Allen and Cocke's work. He
has divided questions concerning data flow into two classes:

I.  Those referring to the status of variables on entry to a

block

2. Those referring to the effect of computations within a

block on later computations

Since the first class of problems has been solved, Kennedy gives
an approach to the second. An algorithm for the identification of
dead variables is shown, which, like Cocke's comman subexpres-
sion elimination algorithm, requires only two passes. The two
passes perform logical operations on bit-vectors, which may be
performed in paraillel on most machines, resulting in a very high-
speed algorithm.



Y The wilue number technigue described by Cocke and .

Schwartz assigns a unique identifier to each calculation in a pro-

gram. Whenever a calculation is to be performed, a table lookup |

determines whether it is currently available, Because a rumeric
identifier is associated with each calculation, formal identity is

not required to find a common subexpression (Figure 3). Pro-

gram-flow properties that render a match impossibie are reflected
by assigning new identifiers at statement labels.
Schneck and Angel (45) have combined the interval analysis

and value number techniques in an optimizer which accepts and

produces FORTRAN programs. All of the techniques referred to
at the beginning of this section are implemented, and new apti-
mizations are introduced. Strict ordering of nodes within an
interval permits the vaiue number technique to be applied glob-
ally and eliminates virtually all common subexpressions. A
second pass over the program, in the manner of Cocke and
Kennedy, permits global constant propagation to be performed.
. The efficacy of optimization at the level of a programming lan-
" guage is also discussed.

A recent paper by Hecht and Ullman {46) introduces a pair
of transformations which may be used in flow-graph analysis.
Transformation Tyremoves an edge which begins and ends at the
same node. Transformation T condenses node 2 into its unique
immediate predecessor b resuﬁing in a/b. A flow graph is called
collapsible if, and only if, repeated application of Ty and Ty
results in a single node. Figure 6 indicates the collapsibility of the
example flow graph. Collapsibility is shown to be equivalent to
interval reducibility. The time to determine collapsibility is
Ofn log ), while the time to determine interval reducibility may
be Ofn<). Information obtained by interval analysis may also be

obtained by application of Ty and T,

T, (4,7) Ty (374/7/5,6)
T, (3,4/7) T, (8,9}
T, (3/4/7,5)

344775060 2/3/4/7/508 ':a’ :;
8/9 89 476/
78/9

T, (1,2/374/5¢
6/7/8/9)

T, (34/7/5/6)
Tz (3/4/7/5/6,8/9)

T, (3/4/05/6/8/9)
T2 (2,3/4/7/5/6/8/9)

Figure 6. Collapsibility-Repeated Applications of Two
Transformations Yield a Single Node in Ofn log n) Steps

CONCLUSION

The powerful architecture-independent optimizations are
responsible for most of the increased speed obtained by an
optimizing compiler. Schneck and Angel (45) have shown that
these optimizations may be applied before compilation and
achieve almost all that a compiler can. With IBM’s FORTRAN H,
architecture-independent optimization accounts for 80 percent
of the speed increase. With the CDC compiler for the 6600,
external optimization produces code faster than the compiler
can, In summary, an external architecture-independent compiler,
supplemented by a machine-oriented compiler, is the most cost-
effective technique. This is true for the manufacturer, who may
devote less time to the compiler, as well as for the programmer,
who will find debugging easier in this environment because he
can see what changes have been effected. ‘
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